
International Journal of Scientific & Engineering Research,Volume 3, Issue 6, June-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Simulation of a Swarm Based Painting Algorithm
Animesh Kundu, Praneeth Talluri, Deepanwita Das

Abstract— This paper presents the simulation of a distributed algorithm for painting a priori known rectangular region [9] by swarm of

mobile robots. The algorithm divides the whole region into some horizontal strips and each strip is assigned to a particular robot for

painting. The simulation is done with Player/Stage Robotic Simulation software. We have simulated an artificial environment that resembles

the algorithm and studied the performance of the algorithm. The simulated result proves the correctness of the algorithm.

Index Terms— distributed coverage, robot swarm, painting; simulation, player/stage

—————————— ——————————

1 INTRODUCTION

warm of low cost mobile robots provides an attractive-

facility of scanning any bounded region in a distributed

manner. This facility can be applied for automated humani-

tarian demining, lawn mowing and milling, sweeping

[1], search and rescue of victims, terrain mapping, space

explorations, aerial reconnaissance etc.

In this paper, we concentrate on simulating an area cover-

age algorithm that is designed for painting a known rec-

tangular region [9]. In this algorithm, we assume that a

swarm of N robots are initially deployed within the given

rectangular region. For simulating the algorithm using

Player/Stage simulation software, we have designed a con-

trol program to be executed by each of the robots. We as-

sume that there is no central control over the robots and the

robots do not communicate among themselves. The whole

rectangular region which is to be covered is considered as a

world. The basic idea of the algorithm is to partition the

world into a number of non overlapping strips/cells and

each cell is assigned to a distinct robot which will be re-

sponsible for painting that particular cell. Based on the ini-

tial locations of any robot and its neighbors, the robots

calculates their ranks as well as the cell to be painted by it.

In our simulation the robots rank themselves, calculating

the final goal point and reach there to start painting. It is

implied that on reaching the final goal point the robots will

start painting and finish the job within finite amount of

time.

This work takes root in the Boustrophedon decomposition

approach [4], which is an exact cellular decomposition,

where each cell can be covered with simple back-and-forth

motions like most of the related work on Multi robot cov-

erage [5], [6], [7], [8], [9]. Together with that our simulated

robots also follow the basic wait-observe-compute-move mod-

el [3]

Due to space limitations we will briefly outline the major

approaches in multi-robot coverage (for a more detailed

survey please refers to [9]).

Most of the previous works consider the presence of

obstacles within the area to be covered. The algorithms are

usually meant for single robot, which are further extended

to team based multi-robot system [6], [7]. In the team based

approach, communication, coordination and

synchronization among the team members involves great

complexity. In [8], authors used distributed approach but

the robots are artificially deployed at fixed starting points

located at regular intervals.

Moreover, the robots are also active in every cycle. Task re-

allocation requires complex and accurate cost estimation

and localization. In [5] and [8], maintaining the graphs

requires large amount of memory.

In this paper, we have simulated the algorithm proposed in

[9], which is based on a more stronger model than the re-

lated works. This algorithm is based on asynchronous model

[2]. It is theorically proved that the algorithm is correct.

Our simulation proves the correctness of the algorithm in a

simulated environment that is similar to any practical situ-

ation.

2 MODEL, ASSUMPTIONS AND PROBLEM DEFINITION

Our aim is to simulate the robots to paint a given rectangular

region by them. Robots may occupy any position within the

region. We assume that no two robots occupy the same posi-

tion. The robots are relatively weak, simple and assumed

to have the following characteristics [3]:

1. Identical and Homogeneous - All the simulated robots

are identical in all respect, specially, they have the same

computational capability. All the robots are assumed to be

point robots with unlimited visibility. However, we assume

that each of them is having a sensing zone of radius T (T is

small)[9].

2. Computational Model - Here we follow the basic

Observe-Compute-Move [3] model. A computational cycle

is defined to be a sequence of “observe”, “compute” and

S

International Journal of Scientific & Engineering Research,Volume 3, Issue 6, June-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

“move” steps. Each of the robots executes same instructions

in all the computational cycles. Once a robot completes one

computational cycle, it starts executing the next one. The ac-

tions taken by a robot in “compute” and “move” steps, entirely

depend on the observations made in “observe” step. In some

situations, an observation might lead a robot not to change its

position in “move” step. In such cases the robot seems to be

idle, though it is actually executing all the three steps.

3. Oblivious or Memoryless - Robots do not retain any

information gathered in the previous computational cycle.

The “painting” operation considered here is assumed to be an

Atomic operation. That means, the painting step would be

completed uninterruptedly.

The models considered here are as follows:

Asynchronous model: Robots operate on independent cycles

of variable lengths. They do not share any common clock

[2].Direction only: Directions of both axes are common to all

the robots, but the positive orientation of the axes may be dif-

ferent [2]. Here, we assume that x-axes of the robots are paral-

lel to the known common reference line. Therefore, the direc-

tion of x-axis is common to all the robots but the robots may

have different views of the positive orientation of the axis.

However, it is assumed that the direction of the positive y-axis

is 90_ counterclockwise to the positive direction of the x-axis.

Each robot has its local co-ordinate system. All the robots

would assume that they occupy the position (0; 0) with respect

to their local co-ordinate system. Further, we assume that

these various co-ordinate systems might not share a common

scale. Figure 1 shows the local co-ordinate systems of four ro-

bots

R1, R2, R3, and R4, and the common reference line

XX

Fig. 1. Positive orientation of the local axes of R1 and R3 are just the

reverse of that of the robots R2 and R4

3. Coverage Algorithm

The first sub-section describes the proposed algorithm. All the

observations supporting the correctness of the Algorithm are

listed in the second sub-section, however for the proofs refer

to [9]. The simulation of the algorithm is discussed in the next

section.

3.1 Algorithm for Painting

It is assumed that the region, to be painted is a rectangular

region and no obstacles are there within the region.

Futher,we assume that all the N robots are enclosed within

the region. Without loss of generality, we assume that the

common reference line be parallel to one side of the rectan-

gular region.

As soon as a robot R becomes alive it performs the follow-

ing computational cycle “observe-compute-move”. As

long as a robot is in alive state, after completing one such

computational cycle, it would again start another cycle and
continue in this way until it completes its assigned job.
Algorithm Paint: (executed by a robot R) We have designed a

control program that has to be executed by each of the robots

in the simulation environment. The controller controls differ-

ent parts of any robot and enables them to execute the below

mentioned phases. Observe According to the local co-ordinate

system, the robot R first observes the positions of all other ro-

bots. Let the co-ordinates of other robots be (a1; b1), (a2; b2),…,

(aN-1; bN-1), whereas, its own co-ordinate would be (0; 0). It is to

be noted here that some of these ai, bi values might be negative

also. This phase will be executed by using a laser and a blob-

finder [10].

Compute

Step 1:

According to the values of y-co-ordinates, the robot R will or-

der all the robots (including itself) so that the robot having the

largest value of y co-ordinate will have the highest rank, that

is, N. Without loss of generality, we assume that after sorting

the co-ordinates of N robots are (x1; y1), (x2; y2), …, (xN; yN), so

that y1 _ y2 _ y3…. yN. The robot having the co-ordinate (xi; yi)

————————————————

 Animesh KunduDepartment of Information Technology,National Institute

of TechnologyDurgapur, West Bengal 713209Email:anik.edu@gmail..com
 Praneeth Talluri, Department of Information Technology National Insti-

tute of TechnologyDurgapur, West Bengal 713209Email: praneethtallu-

ri@gmail.com

 Deepanwita Das Department of Information TechnologyNational Institute

of Technology Durgapur, West Bengal 713209 Email: deepanwitadapta-

ry@gmail.com

International Journal of Scientific & Engineering Research,Volume 3, Issue 6, June-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

would have the rank i and the robot will be mentioned as Ri, 1

_ i _ N. In case of a tie, the values of x -co-ordinate of the ro-

bots are to be considered. The robot having lower x-co-

ordinate would have the lower rank. As we have assumed that

no two robots can occupy the same position, two robots hav-

ing the same y-co-ordinate cannot have identical x-co-ordinate

also. In this way, the robot R would determine its own rank.

Let the rank of R be k. From now on R and Rk will be used

interchangeably.

Step 2:

According to the local co-ordinate system of R, let the upper

boundary of the region to be painted be at a vertical distance

s and the lower boundary be at f. Since all the robots are en-

closed within the area, s >=0 and f <= 0. The whole rectangular

area will be divided into N equal horizontal strips of height (

(s-f)/ N). The top most (according to the local co-ordinate sys-

tem of R) strip will be considered as the Nth strip and the bot-

tom most one will be considered as thefirst strip. Now the ro-

bot Rk will identify the kth strip by computing its upper and

lower boundary as f+(k-1)*((s-f)/ N) and f +k *((s-f)/N). The

kth strip will be colored by Rk. Each robot would start the co-

loring from the bottom left corner of the assigned strip. Ac-

cordingly the robot would compute its destination.

On the way towards their destination, robots would maintain

their relative ranking. It means, while moving, robots should

not cross vertically any other robot even if their routes do not

intersect each other. In other words, to reach the destination, if

a robot is going to gain a vertical height higher (lower) than a

robot of higher(lower) rank (that is, it is crossing another robot

which would affect the relative ranking), it would stop at an _

(pre-defined small quantity) distance from that height and

would wait for that other robot to move on.

Due to the rule stated above, the robot R may need to take a

halt before reaching its final destination i.e.; the bottom-left

corner of the assigned strip. In this compute step, the robot R

should verify this situation and if required, it would recalcu-

late the position of the halt. We call this as the secondary desti-

nation. Suppose, to reach the final destination, R has to verti-

cally cross another robot R which is at a point (x1, y1). Accord-

ing to the given rule, R would stop at a vertical height of y1 ...

Therefore, the modified destination of R would be (0, y1 ..).

Figure 2 shows two possible cases. In Figure 2(a), to reach the

destination D, the robot R has to move in the vertically

downward direction and then it requires to cross R (which is

of lower rank). Therefore, the secondary destination of R

would be D’(0, y1+є). In Figure 2(b), to reach the destination D,

the robot R has to move in the vertically upward direction and

then it requires to cross R (which is of higher rank in this case).

Therefore, its secondary destination would be D’(0, y1-є).

Fig. 2. Secondary destinations w.r.t robot R
Move

After identifying the assigned strip, the robot would start

moving towards its destination point, the bottom left corner

point of the assigned strip. Actually the robots do not need to

reach the exact position of its destination due to its sensing

ability. It is sufficient to reach a height, which is at a distance

T(above/below) away from the final destination. It is to be

noted here that, though the final destination of a robot is the

bottom left corner point of the assigned strip, sometimes, to

preserve the relative ranking, robots may need to wait at cer-

tain height for some other robot to move on. A robot would

always move in vertical direction first, after acquiring the ver-

tical height of the final destination, the robot would then move

into horizontal direction to reach the final destination. Thus, to

reach the secondary destination, a robot moves only in vertical

direction. Depending on whether a robot reaches its final or

secondary destination, the following two courses of actions

would be taken by the robot:

(i) As soon as, a robot reaches the secondary destination,

this “move” state terminates. That is, the computational cycle

will be terminated and the robot will again start a new compu-

tational cycle with “observe” state.

(ii) Once the robot reaches its final destination, before starting

the painting, it would check whether there is any other robot

present in its assigned strip. If not, it would start painting the

assigned area. It would complete the job successfully, without

any interruption and at the end, it would generate a signal

that its job is done. Otherwise, if the robot R finds another ro-

bot, say R, present in its assigned strip, it would terminate the

computational cycle at that moment. That is, here also the ro-

bot would wait for that other robot to move on. At any point

of time, if the robot R finds another robot R at the same vertic-

al height (which might occur at the starting time, if initially

they are at the same height), then depending on the rank of R

and that of itself, R decides its next course of action as follows:

Case A : The rank of R is greater than that of R and th destina-

tion of R is in its positive direction.

Case B : The rank of R is less than that of R and the destination

of R is in its negative direction.

International Journal of Scientific & Engineering Research,Volume 3, Issue 6, June-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

For both the cases, R would break the tie and would move first

towards its destination point.

Case C : The rank of R is greater than that of R and the desti-

nation of R is in its negative direction.

Case D : The rank of R is less than that of R and the destination

of R is in its positive direction.

For both the cases R will wait for R to move first towards

its destination point.

3.2 Correctness of the Algorithm

Observation 1: Throughout the process, relative ranking

of the robots computed by several robots are same upto a reversal of

order. In other words, if the robots R1 and R2 compute the rank of a

robot R as i and j respectively, then either i = j or i = N + 1 � j and

this would remain same throughout the algorithm.

Observation 2: The assignments of cells (for painting) to the robots

as computed by different robots are same and it would remain same

throughout the whole process.

to the robots remains invariant with respect to any

computational cycle.

Observation 3: The movements of robots are collision free.

Observation 4: The four rules stated in the “move“ step lead to take

the robots a non-conflicting decision regarding tie-breaking.

Observation 5: The process would start within finite

amount of time.

Result The painting will be completed within a finite amount of

time.

4. Simulation

The simulation has been performed using Player / Stage robot-

ic simulation software. Player / Stage provides facilities to

model the robots, design the environment and simulate auto-

nomous systems [10]. Player is the program implementing the

algorithm for distributed robotic control based on TCP/IP and

802.11 wireless ethernet. Stage is a graphical user interface that

supports an environment for simulation using robots, sensors

and obstacles. To simulate any algorithm we need to configure

the properties of the robots in the swarm, design the environ-

ment where the robots will be deployed (Stage) and execute

the controller program (Player). Player and Stage works simul-

taneously to simulate the algorithm

4.1 Setting up the robots

The robots used in the simulation of the above mentioned al-

gorithm have a dimension of 1 x 1 x 1, colored green and are

equipped with the following devices :

 Infrared Laser sensors : Range - 20 units, 180 scan

lines, 180 degree field of view, 180 samples.

 Blobfinder : Colors recognized - 2 (red and green),

160x 120 image size, 20 range, 180 degree field of

view.

4.2 Setting up the world

The simulation environment is constructed with a 16 units x

21 units. Figure 3 shows the world with four robots. The

boundary which encloses the map is colored red. The robots

are placed randomly on the map.

Fig 3: A world with four robots

4.3 Control Program

The program implementing the algorithm is written in C++.

It uses the libplayerc++ library to communicate with Stage.

It performs the look, compute and move steps in accodance

with the algorithm. Figure 4 shows some portion of the code.

Fig 4: Some portion of the code

5. Simulation results

Ubuntu 10.04 (Lucid Lynx) is used as the platform for

International Journal of Scientific & Engineering Research,Volume 3, Issue 6, June-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

simulation of the algorithm with hardware specification [

RAM : 2.00 GB, intel core2duo processor with 3.00 GHz]. Four

identical robots has been used in the simulation. The robots

have successfully observed each other, calculating their rank

dynamically, deciding the strip to be painted by it and moving

to the final goal point. Based on the random placement of the 4

robots on the map, mainly three different cases were simu-

lated and these do not include the cases, where more than two

robots are in a straight line. We have simulated 5 such tests for

each of the case.

 case I: All the robots are having same orientation.

Average time taken to reach the goal point for the 5

tests is 2 minutes 33 seconds.

 case II: Robots may have opposite orientations. Av-

erage time taken to reach the goal point for the 5 tests

is 2 minutes 30 seconds.

 case III: Robots (2) are on the same line and having

opposite orientations. Average time taken to reach

the goal point for the 5 tests is 2 minutes 25 seconds.

 It is implied that once a robot reaches its goal point, it will

complete the painting by following simple back and forth mo-

tion. We have considered the total time taken by all robot to

reach their goal point before the starting of actual painting.

Due to space constraints all the cases cannot be included, only

some of the cases and their results are shown in Figure 5. In

Figure 4, X,Y refer to the coordinates of the robot and D refers

to orientation of the robot that is P for positive orientation, N

for negative orientation.

International Journal of Scientific & Engineering Research,Volume 3, Issue 6, June-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig5: Results of the cases

Figure 6 indicates the final goal points reached by the ro-
bots.The results obtained from the simulation are coherent
with the theoretical proofs.

Fig 6:Final Goal points reached by the robots

6.CONCLUSION

In this paper, we have simulated a distributed algorithm for

painting a priori known rectangular region by a swarm of N

robots, each having their local co-ordinate system. This algo-

rithm is based on direction-only and Asynchronous model.

The algorithm guarantees complete coverage within a finite-

time. Algorithm Paint can also be used for painting any Fig. 6.

Final goal points reached by the robots polygonal region, pro-

vided the region is convex. However, in that case, though all

the strips would have the same height, their area will be dif-

ferent and thus the assigned job of each robot may not be

equal. For future work, we would like to extend the algorithm

where more than two robots are placed in the same straight

line..

REFERENCES

[1] D. Kurabayashi, “Cooperative sweeping by multiple mobile robots,”

in IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1744 1749, Min-

neapolis, USA, April 1996.

[2] A. Efrima and D. Peleg, “Distributed algorithms for partitioning a

swarm of autonomous mobile robots,” Technical Report MCS06- 08, The

Weizmann Institute of Science, October 2006.

[3] P. Flochinni, G. Prencipe, N. Santoro and P. Widmayer, “Distributed

coordination of a set of autonomous mobile robots,” In

Proc. IEEE Intelligent Vehicles Symp, 2000, pp. 480-485.

[4] H. Choset and P. Pignon, Coverage path planning: The boustrophe-

don cellular decomposition, in Int. Conf. on Field and Service Robotics,

Canberra, Australia, 1997.

[5] C. Kong, N.A. Peng and I. Rekletis, “Distributed coverage

with multi-robot system,” in IEEE Int. Conf. on Robotics and

Automation, Orlando, USA, pp. 2423-2429, June 2006.

[6] I. Rekletis, V. Lee-Shue, A.P. New and H. Choset, “Limited

communication, multi-robot team based coverage,” in IEEE Int.

Conf. on Robotics and Automation, Orleans, LA, pp. 3462-3468,

April 2004.

[7] D. Latimer, S. Srinivasa, V. Lee-Shue, S. Sonne, H. Choset and A.

Hurst, “Toward sensor based coverage with robot teams,” in IEEE Int.

Conf. on Robotics and Automation, Carnegie Mellon Univ., Pittsburgh,

PA, vol.1, pp. 961-967, August 2002.

[8] I. Rekletis, A.P. New, E.S. Rankin and H. Choset, “Efficient

boustrophedon multi-robot coverage: An algorithmic approach,”

Annals of Mathematics and Artificial Intelligence, vol. 52(2-4), pp. 109-142,

2008.

[9] D. Das and S. Mukhopadhyay, “An Algorithm for Painting an

Area by Swarm of Mobile Robots ,” Int. Conf. on Control,

Automation and Robotics, Singapore, pp. C1-C6, Feb 2011.

gence, vol. 52(2-4), pp. 109-142, 2008.

[10] B. P. Gerkey, R. T. Vaughan, and A. Howard. “The player/stage

project: Tools for multi-robot and distributed sensor systems,” Int. Conf.

on Advanced Robotics, pp. 317-323, Feb 2003.

